[1] Pazzani M J, Billsus D. Content-based recommendation systems[M]//The adaptive web. Springer Berlin Heidelberg, 2007: 325-341.[2] Scharer J B, Frankowski D, Herlocker J, et al. Collaborative filtering recommender systems [J]. Lecture Notes in Computer Science, 2007, 4321: 291–324.[3] Burke R. Hybrid recommender systems: Survey and experiments[J]. User modeling and user-adapted interaction, 2002, 12(4): 331-370.[4] 许海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362.[5] Li S, Zhou C, Chen H. Research on content-based text retrieval and collaborative filtering in hybrid peer-to-peer networks[C]//In:Proceedings of the 8th International Conference on Computer Supported Cooperative Work in Design(CSCWD’04), Xiamen, China, Springer-Verlag: 2005:417-426.[6] Billsus D, Pazzani M. User modeling for adaptive news access[J].User Modeling and User-Adapted Interaction,2000,10(2-3):147-180.[7] Balabanovi? M, Shoham Y. Fab: content-based,collaborative recommendation[J] . Communications of the ACM,1999,40(3):66-72.[8] Kim Y S, Krzywicki A, Wobcke W. et al. Hybrid techniques to address cold start problems for people to people recommendation in social networks[J]. Lecture Notes in Computer Science, 2012,7458: 206-217.[9] Albadvia A, Shahbazi M. A hybrid recommendation technique based on product category attributes[J]. Expert Systems with Applications, 2009,36(9): 11480–11488.[10] Wen H, Fang L P, Guan L. A hybrid approach for personalized recommendation of news on the Web[J]. Expert Systems with Applications, 2012,39(5):5806-5814.[11] Zhou N, Cheung W K, Qiu G P, et al. A Hybrid probabilistic model for unified collaborative and content-based image tagging[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence, 2011,33(7):1281-1294.[12] Guo J, Li W, Li C, et al. Standardization of interval symbolic data based on the empirical descriptive statistics[J]. Computational Statistics & Data Analysis, 2012, 56(3): 602-610.[13] Bezerra B L D, De Carvalho F A T. A symbolic approach for content-based information filtering[J]. Information Processing Letters, 2004,92(1):45–52.[14] Bezerra B L D, De Carvalho F A T. Symbolic data analysis tools for recommendation systems[J]. Knowledge and Information Systems, 2011, 26(3):385-418.[15] Queiroz S R M, De Carvalho F A T. Making collaborative group recomme ndations based on modal symbolic data[J]. Lecture Notes in Computer Science, 2004,3171:121-153[16] Diday E, Noirhomme-Fraiture M. Symbolic data analysis and the SODAS software[M]. West Sussex, England: John Wiley & Sons Ltd, 2008.[17] Billard L, Diday E. From the statistics of data to the statistics of knowledge: Symbolic data analysis[J]. Journal of the American Statistical Association, 2003,98(462):470-487.[18] Kim J, Billard L. Dissimilarity measures and divisive clustering for symbolic multimodal-valued data[J]. Computational Statisticsand Data Analysis, 2012,56(9): 2795–2808.[19] 郭均鹏, 李汶华, 高峰. 一般分布区间型符号数据的描述统计与分析[J]. 系统工程理论与实践, 2011,31(12): 2367-2372.[20] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999,401 (6755):788-791.[21] Lee D D, Seung H S .Algorithms for non-negative matrix factorization[J]. Advances in neural information processing systems, 2001,13:556-562.[22] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001: 285-295.[23] Breese J S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]// Gregory C, Serafin M. Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, San Francisco, CA, USA : Morgan Kaufmann Publishers Inc, 1998: 43-52. |