系统管理学报 ›› 2019, Vol. 28 ›› Issue (5): 934-940.DOI: 10.3969/j.issn.1005-2542.2019.05.0016

• 运筹与工业工程 • 上一篇    下一篇

基于改进花朵授粉算法的风电预测神经网络模型

胡伟1, 胡亚威1, 杨枫2   

  1. 1.上海电力大学经济与管理学院,上海 200090 2. 上海理工大学管理学院,上海 200090
  • 出版日期:2019-09-28 发布日期:2019-11-02
  • 作者简介:胡伟(1979-),博士(后),副教授。研究方向能源电力优化决策等。
  • 基金资助:
    教育部人文社会科学项目资助项目(17YJCZH062

Neural Network Model of Wind Power Prediction Based on Improved Flower Pollination Algorithm

HU Wei1, HU Yawei1,YANG Feng2   

  1. 1. School of Economics and Management, Shanghai University of Electric Power, Shanghai 200090, China; 2. School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Online:2019-09-28 Published:2019-11-02

摘要: 针对常规Elman神经网络容易陷入局部最优、泛化能力不足等缺点,提出一种将花朵授粉算法和Elman神经网络相结合的风电预测新方法。采用逻辑自映射函数构建混沌序列,将混沌变量映射到问题的解空间,使缺乏变异机制的花粉粒集具有较强的自适应能力,有效地防止算法后期最优解趋同的现象;利用变换系数动态收缩自变量范围,降低算法陷入局部极值的概率,使算法的搜索效率得到有效提高。结合预测需求和网络特征,对花粉粒参数进行编码,确定Elman神经网络的最佳权值和阈值。算例分析表明,所提出的风电预测神经网络模型在保证概率预测精度的条件下能达到较好的预测效果,为短中期风电功率预测提供了一种可行的解决思路。

关键词: 风电预测, 神经网络, 花朵授粉算未能, 混沌优化, 风电优化决策

Abstract: Aiming at the disadvantages of conventional Elman neural network such as easily falling into local optimum and insufficient generalization ability, a novel wind power forecasting method combining the flower pollination algorithm and Elman neural network was proposed. By using the logic self-mapping function, the chaotic sequence was constructed, and the chaotic variables were mapped to the solution space of the problem, which made the pollen grains without mutation mechanism had a strong adaptive ability and effectively prevented the convergence of the optimal solution in the later stage of the algorithm, and reduced the probability of the algorithm falling into local extremum by dynamically shrinking the range of the variable coefficients. Combining the forecast demand and network characteristics, the parameters of pollen grains were coded to determine the optimal weights and thresholds of Elman neural network. The numerical example shows that the proposed neural network model has a better predictive effect under the condition of guaranteeing the accuracy of probabilistic prediction, which provides a feasible solution for short-and-medium term wind power forecasting.

Key words: font-size:10.5pt, mso-fareast-font-family:宋体, mso-fareast-theme-font:minor-fareast, mso-ansi-language:EN-US, mso-fareast-language:ZH-CN, mso-bidi-language:AR-SA, ">wind power prediction;neural network;flower polination algorithm;chaos optimization;wind power optimization decision

中图分类号: