摘要: 复杂产品有限元分析(Finite Element Analysis,FEA)费用很高,给多目标优化(Multi-Objective Optimization,MOO)带来很大困难。提出一种人工神经网络(Artificial Neural Network,ANN)辅助的多目标粒子群优化算法(Multi-Objective Particle Swarm Optimization,MOPSO)处理这类计算密集的设计问题:以基于噪声的虚拟样本丰富ANN的训练样本集,通过虚拟样本的控制参数和ANN模型参数的协同优化提高ANN泛化能力;以此ANN为代理模型支持多目标粒子群算法的进化,并采用基于网格邻域信息的拥挤指标提高Pareto前沿的收敛性、多样性及均匀性。最后,以航空发动机高压涡轮盘(High Pressure Turbine Disc,HPTD)多目标优化案例验证该策略的有效性和可用性。试验证明,这种面向成本的MOO方法降低了复杂产品多目标优化的工程应用难度,提高了设计质量。