系统管理学报 ›› 2020, Vol. 29 ›› Issue (6): 1169-1176.DOI: 10.3969/j.issn.1005-2542.2020.06.014
熊红林,冀和,樊重俊,杨梦达
XIONG Honglin,JI He, FAN Chongjun,YANG Mengda
摘要: 航空旅客出行的情况对民用航空机场建设与运营具有重大意义,定义了一种航空旅客出行指数,运用机器学习方法对航空旅客出行指数进行预测,克服了单一预测模型精度的不足,提出一种将长短期记忆网络(LSTM)与支持向量回归(SVR)相结合的航空旅客出行指数组合预测模型,并对预测结果集进行聚类分析。以上海机场航空旅客数据为实证,验证了LSTM-SVR组合预测模型可行性与有效性,实验结果显示:LSTM-SVR组合预测模型较传统单一预测模型具有更高的精度;同时,LSTM-SVR组合预测模型与其他组合预测模型相比也有较明显优势。此外,基于K-均值算法对航空旅客出行指数进行聚类分析并给出评级,此举为机场运营管理及旅客出行提供一定的决策支持。
中图分类号: