Journal of Systems & Management ›› 2020, Vol. 29 ›› Issue (1): 190-188.DOI: 10.3969/j.issn.1005-2542.2020.01.021
Previous Articles
WANG Bo, ZHU Shunwei, DENG Yadong, LIAO Xin
Online:
Published:
王波,朱顺伟,邓亚东,廖昕
作者简介:
基金资助:
Abstract: The existing stochastic volatility models have such a problem: A single-factor volatility model can generate steep curves or flat curves at a given volatility, but it cannot generate both for given parameters, which is inconsistent with the actual observed data. To precisely describe the market implied volatility curve, this paper studied a two-factor 4/2 stochastic volatility model that includes, as special instances, the Heston model and the 3/2 model. Besides, it applied Lewis’s fundamental transform approach to deduce the partial differential equation(PDE). In addition, by adopting the data on S&P 500, it estimated the parameters of the 4/2 model. Furthermore, it investigated the 4/2 model along with the Heston model and the 3/2 model, and compare their different performances. The results indicate that the option price fitting error of the 4/2 model is smaller than that of other two models.
Key words: stochastic volatility, fundamental transform, 4/2 model, Lie's symmetries, Laplace transform
摘要: 现有的随机波动率模型存在这样一个问题:给定一组参数,在一定的标的资产波动率水平下,单因子模型只能产生陡峭或平滑的期权隐含波动率曲线,而不能同时存在两种形态,这与实际观察的数据不符。为了更准确地刻画市场隐含波动率曲面,研究一种双因子4/2随机波动率模型,该模型结合了Heston模型和3/2 模型。采用Lewis的基础变换法将期权定价问题转化为求解偏微分方程(PDE)的问题;利用标普500指数期权数据估计模型的参数,比较了不同模型在期权定价上的差异。结果表明,4/2模型的期权价格拟合误差小于另外两种模型,弥补了原模型在这方面的不足。
关键词: 随机波动率, 基础变负, 4/2模型, 李对称, 拉普拉斯变换
CLC Number:
font-size:10.5pt
mso-ansi-language:EN-US
mso-fareast-language:ZH-CN
mso-bidi-language:AR-SA
mso-font-kerning:0pt
mso-hansi-font-family:"Times New Roman"
mso-ascii-font-family:"Times New Roman"
mso-bidi-font-family:"Times New Roman"
">
serif
mso-fareast-font-family:宋体
mso-fareast-font-family:仿宋_GB2312
F 830.91 ','1');return false;" target="_blank"> ">F 830.91
WANG Bo, ZHU Shunwei, DENG Yadong, LIAO Xin. Options on S&P 500 Index by Fundamental Transform Approach: 4/2 Stochastic Volatility Model [J]. Journal of Systems & Management, 2020, 29(1): 190-188.
王波, 朱顺伟, 邓亚东, 廖昕. 4/2随机波动率模型下的期权定价[J]. 系统管理学报, 2020, 29(1): 190-188.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://xtglxb.sjtu.edu.cn/EN/10.3969/j.issn.1005-2542.2020.01.021
https://xtglxb.sjtu.edu.cn/EN/Y2020/V29/I1/190